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Abstract. This work can be considered as a continuation of ow previous study, in which 
an explicit form of coherent states (cs) for all SU(N)  groups was constructed by means of 
represemtions on polynomials. Here we extend that approach to any SU(I, 1) group and 
consmct explicitly corresponding cs. The cs are parametrized by dots of a coset space. which 
is, in that particular case, the open complex ball CD‘. This space together with the projective 
space CP’, which parametrizes the cs of the S U ( l +  1) group, exhaust all complex spaces of 
constant culvature. Thus. both sets of cs provide a possibility far an explicit analysis of the 
quantimtion problem on al1 the spaces of constant cu~afure. This is why the cs of the SU(N) 
and SU(f, 1) groups are of importance in connection with quantization theory. The consmcted 
cs form an overcompleted system in the representation space and, as quantum states possessing 
a minimum uncertainty. they minimize an invariant dispersion of the quadratic Casimir operator. 
The classical limit is investigated in terms of symbols of operators; the limit of the so called 
star commutator of the symbols generates the Poisson bracket in CD‘, the latter plays the role 
of the phase space for the corresponding classical mechanics. 

1. Introduction 

For a long time coherent states (cs) have been widely used in quantum physics [&SI. On 
account of the fact that they are paramemzed by points of the phase space of a corresponding 
classical mechanics, they are a natural and convenient tool for establishing a correspondence 
between classical and quantum descriptions. The cs introduced by Schrodmger and Glauber 
were mainly used in this context. From a mathematical point of view cs form a continuous 
basis in Hilbert space (a general description of Hilbert spaces with basis vectors labelled 
by discrete, continuous, or a mixture of both types of index is given in [6]). As is well 
known, it is possible to connect quantum mechanical cs with the orbits of Lie groups 
[7]. In particular, the ‘ordinary’ cs of Schrodinger and Glauber turned out to be orbits 
of the Heisenberg-Weyl group. A connection between CS and a quantization of classical 
systems, in padicular systems with a curved phase space, was also established [SI. From 
this point of view flat phase space corresponds to the Heisenberg-Weyl group and to the 
Schradinger-Glauber cs. Kahlerian symplectic manifolds of constant holomorphic cwature  
can serve as the simplest example of a curved phase space. Such spaces are, for positive 
curvature, the projective spaces CP’, and, for negative curvature, the open complex balls 
CD‘ [9]. The groups S U ( N ) ,  N = I + 1 and SU(I ,  1) are groups of movements for the 
spaces CP‘ and CD’ correspondingly, and the latter are the coset spaces SU(N)/U(Z) 
and SU(I, l ) / U ( I ) .  The quantization on the former is connected with a construction of 
cs of the groups S U ( N ) ,  and on the latter with the one of the groups SU(I, 1). These 
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circumstances, besides all other arguments, stress the importance of the investigation of cs 
for these groups as a first and necessary step in a systematic construction of quantization 
theory for systems with curved phase spaces. One ought to say the investigation of the cs of 
these groups has another motivation as well. Their importance for the physics of the group 
S U ( N )  is well known and does not need to be explained here. As to the SU(l ,  1) ones, 
they often arise in quantum mechanics as groups of dynamical symmetry. For example, the 
group of the dynamical symmetry of a particle in a magnetic field is SU(2, 1) [Z], as is 
the group of dynamical symmetry of Einstein-Maxwell equations for axial-symmetric field 
configurations [IO] and so on. 

An explicit form of the cs for any S U ( N )  group was constructed and investigated in 
our work [I 11, using representations  of^ the groups in the space of polynomials of a fixed 
power. One can also find there references devoted to the cs of the SU(2) group and related 
questions. In the present work we are going to extend that approach to construct the cs 
for all SU(1, 1) groups. One ought to say that the Cs of the SU(1, 1) group from that 
family were first cons'uucted in [7,12] using the well investigated structure of the SU(1, 1) 
matrices in the fundamental representation. A quantization on the Lobachevsky plane, which 
is the coset space SU(1, l)/U(l), was considered by Berezin [8,13], using these cs. It is 
difficult to use the method from [7,121 or commutation relations for generators only to 
construct explicitly cs for any group SU(I,  I), since technical complications increase with 
the number 1. Nevertheless, a generalization of the method used by us in [ll] allows one 
to obtain the result, despite the fact that S U ( L  1) groups are non-compact and their unitary 
representations are infinite-dimensional (see the appendix). 

We construct cs of the SU(L 1) groups as orbits of highest or lowest weights factorized 
with respect to stationary subgroups, using representations in spaces of quasi-polynomials 
of a fixed integer negative power P. The cs are parametrized by points of a coset 
space, which is, in that particular case, the open complex ball CD'. As has already 
been said, this space together with the projective space CP'. which parametrizes the Cs 
of the S U ( N ) ,  N = I + 1, group, exhaust all complex spaces of constant curvature. The 
constructed cs form an overcompleted system in the representation space and, as quantum 
states possessing a minimum uncertainty, they minimize an invariant dispersion of the 
quadratic Casimir operator. The classical limit is investigated in terms of symbols of 
operators. The role of Planck's constant h is played by \PI-', where P is the signature of 
the representation. The limit of the so called star commutator of operator symbols generates 
the Poisson bracket in CD', the latter plays the role of the phase space for the corresponding 
classical mechanics. 

In the appendix we add some necessary information about representatipns of the non- 
compact groups with which we are working. 

D M Citman and A L Shelepin 

2. Construction of cs of SU(I, 1) groups 

Following the general definition [4,7] and the method we used for S U ( N ) ,  we are going 
to construct the cs of the SU(1, 1) groups as or'& in some irreducible representations 
(IR) of the groups, factorized with respect to stationary subgroups. First. we describe the 
corresponding representations. 

Let g be matrices N x N ,  N = ~ 1  + 1 of a fundamental representation of the group 
SU(I ,  l), g E SU(1, 1). They obey the relations 

Ag'A = g-' detg = 1 A = ( '  0 - O )  4 
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where 4 is the 1 x I unit .matrix. 
Define by CN the N-dimensional space of complex row vectors z = (z,), p = (0, i ) ,  

i = 1, ..., I ,  with the scalar product (Z,Z')C = i,A&'z;, and by cN the dual space 
of complex columns i = (i,), with the scalar product (i, ?')E = ?A;~i". The anti- 
isomorphism of the spaces CN and cN is given by the relation 

z Z 0 z, = Awu? (1) 
- 

on account of the equation ( 2 ,  E')? = (z. z')c. It is convenient to define the mixed Dirac 
scalar product between elements of CN and cN as 

The group acts by its fundamental representations in the spaces CN and cN 
z, = zg is = g - ' i . ~  (3) 

The form (z', Z )  is invariant under the group action, (2:. is) = (z', 2 ) .  This means that the 
whole domain of z, can be divided into threeinvariant subdomains, where (z, E) is positive, 
negative or zero. We~restrict ourselves to the subdomain where (z, Z )  is positive, choosing 
the normalization condition 

I 

(2 ,  i) = 12012 - IZiI* = 1 
i=l 

which is sufficient for our purpose of constructing cs connected with the quantization on 
the coset space CD'. 

Consider spaces i 7 p  and fip of quasi-polynomials Y p ( z )  and *p(Z) in z and i, 

(n~=lno ,n t  ,..., n I l C n , =  PI , 
where P are integer and negative, P < - I ;  all n, are also integer and no < P, ni 2 0, 
i = 1, .. . , I .  

The fundamental irreducible IR of the group induce unitary IR in the spaces np and 
f i P ,  

T(g)*p(z) = *P(ZS) zg =zg * P  E RP 
(6) 

T"(g)Vp(23 = YP(Z,) ' is = g-'2 *Ai) E f i P .  

We will further call P the signature of the R. Such representations and their place among 
others of S U ( l ,  1) groups are described in the appendix. 



7006 D M Gitman and A L Shelepin 

Define a scalar product of two polynomials from l l p  as 

Wpl@b)  = /-%(z)d@p(t,z) 

G d z  = d(lzlz)d(argz) 

which can also be interpreted as a mixed Dirac scalar product between elements IY;) = 
'P;(z) from ITp and {qpj = Yp(Z) from lip, because of the anti-isomorphism (1). 

Note that the restriction to P integer is a way to avoid representations in spaces of 
multivalued functions; the additional restriction P < -1 ensures the existence of the scalar 
product (7). 

The monomials 

form a discrete basis in ITp, whereas the monomials 'PPJ.J(~) = qp.( . ) (z)  form a basis in 
i ip.  ~~ 

Using the integal 

it is easy to verify that orthonormality and completeness relations hold 

~ ~ P , [ f i l ~ P , l " ~ l ~  = ( P .  nlP7n') = 8["),[",) 
C i P , n o P , n l = I p  (9) 
("1 

where I p  is the identity operator in the space of representation of signature P .  The 
monomials (8) obey the remarkable relation 

(10) ~P,I")(Z')~P,~"l(Z) = pJP.("J(Z')'P.~"l(Z) = (2 , - P  . z )  
b l  bt 

which is group invariant on account of the invariance of the scalar product (2) under the 
group transformation, (z;, &) = {?,E). The validity of (10) can be checked by means of 
the formula 

together with the binomial formula. 
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The generators A: of the groups U(1,I)  = SU(1, 1) 8 U(1) obey the relations (see the 
appendix) 

(A:)+ = (-l)s!A+s*AY ' (11) 

where the Hermitian conjugation is defined with respect to the scalar product (7). Their 
explicit form in the space lIp is A: = z,a/az,. and in the space l i p  is A: = a/aipi"  
(action on the left). 

Independent generators pa, a = 1, N? - 1. of S U ( 1 , l )  can be written through A;, 

= (rd;At [pa, f b l  = i f d c  (12) 

where r. are generators in a fundamental representation, [Fa, r b ]  = ifobcrc. However, in 
contrast with the case of S U ( N )  group, where rz = I'a. the r. can be either Hermitian 
or anti-Hermitian in case of SU(1, 1) group. Namely, N . matrices r,, with zero diagonal 
elements and (Fa): = -m, differ from the corresponding matrices S U ( N )  by a factor 
i only. To be sure, we take those to be the first Fo, a = 1, I.. , N .  In particular, for SU(2) 
and SU(1 , l )  we have 

su(2): r, = uk 

SU(1, l ) :  FA = imL h = 1 , 2  r3 = u3 

k = I ,  2.3  
(13) 

where the uk are the Pauli matrices. 

of the generators pa. 
It is easy to verify that condition (11) and the above convention provide the Hermicity 

The quadratic Casimir operator 

can be written through the A; and evaluated explicitly 

if one uses the formula 

which is a generalization to the SU(1, 1) group of the well known formula for matrices of 
the S U ( N )  group, 

Let us construct orbits of a lowest (D'(P0)) or a highest (D-(OP)) weights (of vectors 
ofthe basis (8) with the minimal length dm = IPI, namely no.= P, ni = 0. For 
D+(PO) the lowest weight is the state ' P p , y  ... O](Z) = ( ~ 0 ) ' .  Then we get, in accoiance 
with (6), 

i' zgO" (16) 
P 

m W P , { P O  ... O ] ( Z )  = [z,g0"] = (2, aP 
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where the vector ii E EN i S ~  the zero column of the SU(1, 1) matrix in the fundamental 
representation. 

arg 17P + A changes all the states (16) 
by the constant phase exp(iPh). To select only physical different quantum states (cs) from 
all the states of the orbit, one has to impose a gauge condition on 11, which fixes the total 
phase of the orbit (16). Such a condition may be chosen in the form argP = 0. Taking 
into account the fact that the quantities ii obey the condition 117°12 - Ef=, liiiI2 = 1, by 
definition, as elements of the first column of the SU(I, 1) matrix, we get the explicit form 
of the CS of the SU(1,l) group in the space l l p :  

D M Gitman and A L Shelepin 

One can notice that the transformation arg 17" 

W P , A Z )  = (2 ,  ii)p 117) 

In the same way we construct the orbit of the highest weight qp,[p~...~~(Z) = (io)' of 
D-(OF') in the space f i p ,  the corresponding CS have the form 

q P , u ( a  = (U, ZIP (19) 

-~ 
One can see that Yp,i(z) = WP,"(~), z tf i, U e 17. 

The quantities ii and U ,  which parametrize the CS (17) and (19), are elements of the coset 
space SU(I, l ) / U ( l ) ,  in accordance with the fact that the stationary subgroups of both the 
initial vectors from the spaces IIp and fip are U(& At the same time, the coset space is the 
I-dimensional open complex bal1 CD' of unit radius. Equations (18) or (20) are just possible 
conditions which define the space. The coordinates U or 17 are called homogeneous in the 
CD'. One can also introduce local independent coordinates ai, i = 1.. . . ,I,  Et=, Iailz e 1 
on CD'. For instance, in the domain where uo # 0, the local coordinates are 

ai = q / u o  

exp(-(i/N) E:=, wax) (21) 
U ;  =ail40 

u a =  ~J- ' 

To decompose the cs in the discrete basis one can use the relation (IO), since the 
right-hand side of equation (IO) can be treated as cs (17) or (19), 

*P,i(Z) = ~ P , [ " l ~ w P , { n ~ ( z ) .  (22) 
I") 

Using Dirac's notations, we get 

( p ,  ulP,n) =~qrp.[,&) (P,nlP, U )  = * P , { ~ J ( ~ ) .  (23) 

Thus, the discrete bases in the spaces n p  and fip are the ones in the cs representation. 
The completeness relation can be derived similarly to the case of the S U ( N )  groups 

u11, 

J IP, u) (P ,  uldw(ii. U) = IP. (24) 
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3. Uncertainty relation and cs overlap 

The elements of the orbit of each vector of the discrete basis [ P ,  n )  and, in particular, the 
constructed cs are eigenstates for a nonlinear operator C;. which is defined by its action on 
an arbitrary vector I*) as 

with ea from (14). The proof of this fact is fully anaIogous to the one for the S U ( N )  group 
[I 11. Direct calculations result in 

The eigenvalue A ( P , n )  attains its minimum for the lowest weight (D*(PO)), for which 
E, n: = P2 = min. The Cs IP, U) belong to the orbit of the lowest'weight {n] = [PO.. .O]. 
Thus, we get 

PZ(N - 1) 
2N 

1P.u). CiIP, U) = 

Define a dispersion of the square of the 'hyperbolic length' of the isospin vector, 

where C, is a quadratic Casimir operator (14). The dispersion serves. as a measure of 
the uncertainty of the state IT). Due to the properties of the operators C2 and C; , it is 
group invariant and its modulus attains its lowest value P ( N  - l)/2 for the orbits of lowest 
@+(PO)) or highest (D-(OP)) weights, particularly for the constructed cs, compared with 
all the orbits of the discrete basis (8). The relative dispersion of the square of the 'hyperbolic 
length' of the isospin vector has the value in the cs 

p 1 - N - 1  ACz N - 
C2 N + P  

and tends to zero with h + 0, h = l / \ P \ .  Note, that the relative dispersion here obeys 
the relation -CO < ACz/Cz < 0, in contrast to the case of compact groups S U ( N ) ,  where 

overlap, one has to say that many of its properties were generally 
investigated in [7,15-171. Using the completeness relation (9) and formulae (23), (10) and 
(17), we get for the overlap of the cs in question 

0 < ACz/Cz < 1. . 
Proceeding to the 

( P , u [ P ,  U) = C ( P , u l P , n ) ( P . n l P , u )  
In1 

lnt 

= (U, ijy = Yp,:(u).  
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As in the case of the Heisenberg-Weyl and S U ( N )  groups, the cs overlap plays here the 
role of the &function (the so called reproducing kernel). Namely, if *p(u) is a vector IY) 
in the cs representation, Qp(u)  = (P, u l q ) ,  then 

D M G i m n  and A L Shelepin 

QPW = S(p,ulP,u)Qp(~)di~p(?,u). 

I(P> ulP, U N  < 1 

I(P, u ~ P ,  U)[ = 1 

The modulus of the cs overlap (28) has the following properties: 

lim I(P, ulP, U) = 0 if U # U  

(29) 
P-tCC 

only if U = U 

The symmetric s(u, U) generates the metric tensor in the space CD'. To demonstrate that, 
it is convenient to go over to local independent coordinates (21). In local Coordinates the 
symmehic takes the form 

with A(u, 6) = 1 - xi a&. 
infinitesimally close points 01 and CY +&, one finds 

Calculating the square of the 'distance' between two 

dS2 = gip&d& gii  = - P A - 2 ( f f ,  z))D(ff, E)& -k Ei f fk ]  

F = P Inh(w, E )  
a2F 

aeiazk g: - - zk - 

det llgj;ll = P ' h F N ( f f , 6 )  & ii = --A(ff,z)(6ki 1 - & f f i ) .  
P 

The quantity gi; is the metric on the open complex ball CD' with constant halomorphic 
sectional curvature C = 2 / P  i 0 191, whereas gEi defines the corresponding Poisson bracket 
on this Kahlerian manifold 

As we have just said, the logarithm of the modulus of cs overlap defines a symmetric 
on the coset space. The expression for the symmetric through cs has one and the same 
form for any ,gaup; its existence follows directly from the properties of cs. As for the real 
distance p on the coset space, its expression through cs depends on the group. For example, 
in case of the CP' (the SU(1 + 1) group), cos(p/P) = [(U, ?)I, so that for 1 = 1, p is 
the distance on the sphere with radius P / Z .  For our case of CD' (the S U ( 1 , l )  group) the 
distance p shows up in the relation cosh(p/P) = I (U, ij) I. Thus, for both cases (see [ 111 as 
well) we have the following relations between cs overIaps and the distances 

t We remember that a real and positive symmeuic obeys only two axioms of a distance (s(u, U) = s(v, U )  and 
s(u, U) = 0. if and only if U = U), except the uiangle axiom. 
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4. Operators symbols and classical limit 

We are going to investigate the classical limit on the language of operator symbols, 
constructed by means of CS. Remember that the covariant symbol QA(x, U )  and the 
contravariant one PA(u, ii) of an operator i are defined as [13,14] 

QA(u ,  U) ( P , U l i l P . U )  A = Pa(U, li)lP, U()P ,  U[dpp(i, U )  - 1  (35) 
Q A ( u , ~ )  = ~~A(~,li)I(P,UlP,u)~’dpp(li,U). 

One can calculate the P and Q symbols of operators explicitly, if one formally generalizes 
the creation and annihilation operator method to~the case under investigation. Consider for 
example IR D+(PO) and introduce, as in SU(N), operators aJ and U ” ,  which act on basis 
vectors and cs by the formulae 

n +1 
a i ~ P , n )  =J-.-IP+I P + 1  ,..., np+l,: . . )  =zp*p,(nJ(z) 

a”lP,n) =.&IP - I ,  . . . ,al l  - I , .  . .) = --r~rp,(~t(z) 
a 

82” 

(Note that the sign t does not mean the Hermitiin conjugation with respect to the scalar 
product (7).) In contrast to the SU(N) group where P and nlL are always positive, P and no 
are negative for the Sun, 1) goup, so that complex factors can appear when the operators 
a: and a” act on states. Because of negative no, the space of states cannot be treated as a 
Fock space. 

Quadratic combinations A; = atu” = z,a/az, obey commutation relations (42) and 
are generators of the groups U(1,  1) = SU(I,  1) €3 U(1). This is why operators which are 
polynomial in tbe generators can be witten using u t  and a” and presented in the normal 
or anti-normal form, 

Direct calculations give for the symbols of such operators: 
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In manipulations it is convenient to deal with non-diagonal symbols 

which can be derived from the corresponding diagonal symbols (38) by the replacement 
ii + G and by multiplying each term by the factor (U, G ) .  In the local independent variables 
(21) these symbols are analytical functions of both their argTents. 

Consider for example covariant symbols (.fa) = (P,uIJ.lP, U) of generators .fa = 
(ra);Ar for the SU(1,l) group, so that r. are matrices (13)). In this case it is convenient 
to parameterize the cs by j, 8, q ;  P p  = j ,  rl' = cosh$e-ip, ii2 = sinh $ee-'q, 

(.fl) = Fjs inhecosq  = j ,  

( j2) = j sinh e sin q = j z  

( A )  = F j  coshe = j 3  . 

(39) 
.2 - .2 - j: - j l +  j 3  - J 

where the upper sign belongs to D+(P) and lower one to D-(P).  
The dots on the axis (53) correspond to the states of discrete basis I j ,  m), .?I j ,  m) = 

mlj, m); the cs are placed on the upper (D+(PO)) or lower (D-(OP)) sheet of the two 
sheet hyperboloid on figure 1. 

The classical limit can be considered as in [ll]. So, one can obtain for the star product 
of two covariant symbols in the local coordinates (21) the following expression 

Q A ,  * Q A ,  = Q A , A , ( ( Y , ~ )  = / QA,((Y,B)Qnz(B,z)e-"(",8)d~~(B,B) 

where the matrix gih was defined in (32) and is proportional to h = l/IPI. 
Note, the decomposition of QA,(E,  B)QA,(B, 6)  into a series with respect to B - (Y is 

possible if symbols are non-singular (differentiable) functions on 01, B in the limit P + 03. 

This is valid for polynomial operators, but not for the operators of finite transformations, 
which are singular in that limit. 

Taking expression (33) for the Poisson bracket in the space CD', and equation (40) into 
account we get for the star multiplication of two symbols of polynomial operators 

h-0 fim Q A ,  * QA, = QA, QA, 

QA, * QA, - QA, * QA, = i{QA,,  QA,) + o(h). 
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Fiyre l .  MeanvduesincsofrAeSU(1,I)generat~n. 

Equations (41) are just Berezin's conditions for the classical limit in terms of operator 
symbols [7,13], where the quantity h = l/IPI plays the role of the Planck constant. 
This property of h has been remarked upon already in section 3, while investigating the 
uncertainty relation. From that consideration it is also easy to see that the length of the 
isospin vector is proportional to the signature P of a representation. Thus, the classical limit 
in this case is connected with large values of the isospin vector. In contrast to the ordinary 
case of the Heisenberg-Weyl group, where the Planck constant is fixed, as for S U ( N ) ,  the 
Planck constant can re&y take different values, which are? however, quantized since the 

It is easy to demonstrate that, the contravariant and covariant symbols coincide in the 
. quantity P is discrete. . ~~ 

classical limit. For instance, 

For the operators of finite transformations one can derive 

Q~cs~)rcS,)(u; 17) = (P, 4T(gz)T(gi)lP. U) = (U, g2gi.ii)' 

QTW * 1 2 ~ ~ ~ )  = Qr(s2gl). 

We see that the law of multiplication of these symbols is similar to that of matrices of finite. 
transformations and does not depend on P. Thus, we have an example of operators, which 
do not obey equation (39) in classical physics. According to Yaffe's terminology 1151 these 
are the so called non-classical operators. 
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5. Conclusion 

Thus, an explicit construction of the Cs for all the SU(1, 1 )  groups appears to be possible as 
well as for all S U ( N )  ones due to an appropriate choice for the irreducible representations 
of the group in the space of polynomials and quasi-polynomials of a fixed power. Many 
formulae look very similar in the two cases, nevertheless there are also many differences 
connected with the principal difference between the compact S U ( N )  and non-compact 
SU(1,l). Construction of the cs of the two groups provides an explicit analysis of the 
quantization problem on complex spaces of constant curvature in full agreement with the 
general theory [I71 of quantization on Kahlerian manifolds. 

D M G i t m  andA L Shelepin 

Appendix 

We give here a brief description of discrete positive D+ and negative D- series of unitary 
IR of SCr(1, m). in particular, SU(I,  1 )  ones, which are related to the CS in question. 

Remember first, if r is a rank of a semi-simple algebra Lie, which it is our case, 
then there exist r fundamental IR D I ,  . . . , D,, having the corresponding highest weights 
MI,  . . . , M,. Consider the tensor product of the representations 

~ p ' ~ ~ 2 p 2 . . . ~ p I  

where P; are non-negative integers, and D? means the P; multiplied by the direct product 
of the Di. Let D(P1, . . . , P,) be the irreducible part of this product, containing the highest 
weight M ( P )  = P;M;, then all finite-dimensional IR (and therefore all unitary IR of 
compact groups) are exhausted by such representations. The set of numbers PI, . . . , Pr 
is called the signature of IR. Fundamental IR are characterized by one non-zero index of 
signature, which is unity. For unitary IR of non-compict groups one needs to consider, 
in general, complex Pi, i.e. to generalize the tensor calculus and consider tknsors of non- 
integer or complex ranks [18].  In contrast to the case of compact groups, all linear unitary 
LR of non-compact groups are infinite-dimensional. In this case there are two different types 
of representation space, which correspond to discrete and continuous series. The theory of 
discrete series is mostly analogous to the finite-dimensional case. In [8-241 a classification 
of unitary IR of SU(1, m). The case of SU(1, 1) is considered separately in [U]; besides, 
one can find the case of SU(2,l) in [26] and the case of SCr(2,Z) in [27]. 

The fundamental IR D(10. ..O) and D ( 0 .  ..O) of SU(1, m) groups are representations 
by N B N, N = 1 + m, quasi-unitnodular matAces g and g-', Ag+A = g-l, A = 
diag,,,(l, . . . , 1, -1,. . . , -1) in spaces of N-dimensional rows zp or columns Zf i ,  see e.g. 
(3). Other fundamental IR D(O10.. .O), D(OO1.. .O), . . . , D ( 0 . .  .loo), D ( 0 . .  ,010) are 
realized in spaces of antisymmetric elements zik, Z ; k m , .  . . , iikm, P, [18,19,26,30]. 

As is well known the commutation relations of U(1,  m) generators have the form 

[A; ,  A:] = 6IA: - SLAI (42) 

and furthermore, for unitary 1~ [19,21] 
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It is convenient to introduce a basis, consisting of eigenfunctions of the commuting operators 
Af, 

Aflnlnz.. .nN)~=ni1n,n2, ,.n~) N_=1 + m  

where the ni are called occupation numbers. By means of the commutation relations (42) 
we get for i # k 

The conditions 

nk(nj + 1) 2 0 

nk(nj+ 1) < O  

k ,  j < 1  or k,  j z I 

k < I  e j or j < I <  k (45) 

must hold for unitary R. 
One can reach any weight of agiven IR by means of operators Ai, moving from any other 

weight of the representation; the weight diagram stops suddenly when one reaches a highest 
weight, the factor in (44) appears to be zero at this step. The occupation number space 
is N-dimensional; weights, which correspond to a given IR, fill in a area with Cni-= P, 
where P is an eigenvalue of the operator CAI, commuting with all the operators A;. 

Consider some particular cases. For the groups SU(2, 1) and SU(3)  the weights fill 
in the three-dimensional space (figure Al(a)); the weights which correspond to one IR fill 
in areas on the planes nl  + n2 + n3 = P (such areas for integer n; are represented on 
figure Al(b)). 

For unitary IR of SU(3)  either ni > 0 or n, < -1 and are integers. Unitay IR are finite- 
dimensional; areas with P > 0 correspond to IR Do(PO), ones with P < -3 correspond 
to Do(OQ), Q = -P - 3 = Xi qi, qi = -pi - 1 > 0. The representations Do(PO) and 
Do(OP) are conjugated. One can find the following unitary IR for SU(2. l), using (44) and 
(45):~ bounded below by the weight with Y&", Y = - P / 3  - n3, 

D+(PO), P < 0, nl ,  nz 2 0 and integers, n3 f 0 and real 

D:(PO), P > 0, n l ,  n2 > 0 and integers, n3 < -1 and integer 

and 1R conjugated to the former, bounded above by weights with Y,,, Y = -Q/3 + 43, 

D-(OQ), Q e 0, 41, q2 > 0 and integers, 43 < 0 and real 

D;(OQ), Q 2 0, 41, q 2  5 0 and integers, 43 < -1 and integer 

Q = - P - 3 ,  q i=-ni - l .  ~ I 

The replacement of the signature of IR D( PO) + D(0 - P - 3) is a particular case of  the 
group of parameters transpositions of IR [19]. Such replacements leave eigenvalues  of the 
Casimir operator unchanged. 

Weights of IR for the SU(4): SU(3, l), i U ( 2 , Z )  groups fill in areas in the space 
nl + nz + n3 + n4 = P; such areas, for ni integers, are shown on figure Al(c). 

 the unitary IR D(P0 ... 0) and D(0 ... OP) of the S U ( N )  are well knowwfull 
 symmetrical representations. They can be realized, for instance, in spaces of polynomials 
of a fixed power P .  . 
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C) 

/ 

Weights diagrams of the unitary IR, corresponding to the discrete series D'(P0 . . . 0) 

They fall in a sum of full symmetrical m by the reduction on the compact subgroup 
and D-(O.. . OP) of the SU(1 , I )  groups are presented on the figure A2. 

S U ( 0  

m 

D - 0 . .  . OP)suc~,i) =COCO. . .0~9so(r). 
e's0 

This is easily seen on figure A 2  each level of the weight diagram corresponds to an LR 
of a subgroup. Besides the eigenvalues of the 1 - 1 commuting Cartan generators Hi from 
the compact subgroup SU( l )  (these are linear combinations of A!, i # 0), the weights of 



Coherent states of SU(1. I )  groups 7017 

SU(1.1) SU(2.11 SU(3.11 

Figure A2. Weight diagrams of discrete series 
D+ and D- for groups SU(1. I). SU(2.  1). 
SU(3,l). 

SU(1, 1) are characterized by an additional number Y = F ( P / N  -no); the upper sign for 
D'(P0. .  .O), the lower one for D-(O.. .Of')), and weight diagrams are bounded below 
and above correspondingly. 

Y,,,j, = - P ( N  - 1) /N Y,, = P ( N  - l),". (46) 

The weight structure of these IR does not depend on P ;  only the position of the~diagram in 
the weight space depends on P ,  according to (46). 
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